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FOREWORD

This report describes the design and use of a piezoelectric polymer, polyvinylidene
di-fluoride (PVDF), as a sensor for the measurement of projectile tilt, and as a trigger
source for shock wave and projectile impact experiments. The one device produces two
independent signals: one a piezoelectric signal, the other a contact-closure signal. This
duality significantly improves the reliability of the trigger; if one signal fails then the other
will still be available.

Analyses are provided to allow the prediction of signal magnitudes from both the
shocked PVDF mode and the contact-closure mode of the trigger sensor.

Experimental details are given for both the physical and electrical construction of the
trigger sensor so that this work can be applied in future research.

Results from the use of this device, obtained in impact experiments, are presented
that demonstrate the advantages of the trigger. To date this trigger has been used
successfully by the authors many times without a single failure.
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CHAPTER 1

INTRODUCTION

THE DUAL TRIGGER SOURCE

A reliable trigger source is crucial to any single-shot shock wave, or projectile impact,
experiment involving electrical diagnostics. A good trigger source is one that consistently
provides a predictable signal with a fast rise time, and is not prone to receiving stray signals
from outside sources. The addition of a second, nearly simultaneous, triggering r-echanism
provides further confidence that cameras, oscilloscopes, pulsers, etc., will be triggered
correctly and reliably during an experiment. To date the trigger sensor described here has
been used successfully many times without a single failure.

This report details the design of a trigger source that produces two nearly
simultaneous pulses using two independent techniques on the one sensor. One pulse is
piezoelectrically generated by shocking the thin PVDF sensor. This piezoelectric signal is
a precursor to a closing switch signal, which is produced by using the same sensor as the
closing switch in a capacitor discharge circuit. The rise time and magnitude of the
piezoelectric precursor depends on the radius, impact velocity, and tilt of the projectile. By
contrast, the closing switch signal is independent of the projectile parameters.

The generation of two signals from one source results in a high trigger reliability. The
circuitry required is simple, and the combined sensor and circuit is inexpensive.

PROJECTILE TILT MEASUREMENT

The projectile impact experiments described here are fairly typical of such
experiments. A steel cylinder is projected by a gun towards a target at a prescribed velocity
and strikes at a particular impact (tilt) angle. It is frequently important to know the angle
between the projectile and the target on impact, i.e., the tilt angle. We will describe the
measurement of tilt angle using a PVDF sensor. Up to now the tilt angle could only be
measured with a high-speed framing camera, a technique that is difficult, expensive,
inaccurate, and only suitable for laboratory conditions.

We will show how a polyvinylidene di-fluoride (PVDF) sensor can be used to measure
tilt angle, and how it can also be used as a reliable impact trigger. The method is simple
and inexpensive.

1-1
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PVDF AS A STRESS TRANSDUCER

Properly prepared sheets of PVDF polymer exhibit excellent piezoelectric properties.
PVDF film products typically generate large electrical signals when shocked. PVDF is a
long-chain semicrystalline polymer containing repeating units of CH2 -CF2. During
manufacture, a non-polar, so-called a-phase material is produced. By stretching the film
while it cools, a polar or B-phase PVDF is created. The film is metallized on each side with
a desired pattern and then subjected to a large electric field (circa 108 V/m), which aligns
the B-phase crystallites, resulting in a permanent polarization. It is this metallized, poled,
B-phase PVDF that is used for making piezoelectric film products. Depending on the
techniques used in the above processes, anything from high quality, precision shock pressure
transducer elements to inexpensive stress sensors can be made.

Stress transducers manufactured from PVDF must be used with caution; the PVDF
material must be correctly manufactured to give it a predictable performance. PVDF
transducers obtained from some manufacturers produce an electrical charge, as a function
of pressure, which is significantly non-linear, even parabolic. The sensitivity of the device
is also a strong function of the source of the virgin polymer and of the methods of stretching
and poling. Bauer' has patented a poling technique that min1inizts non-linearities and
produces reproducible, precision stress transducers. These precision transducers are
commercially available; they are manufactured from a master batch of PVDF virgin polymer,
poled with the Bauer process, and distributed in the US by Ktech.* Poling data for each
of these transducers are supplied by the manufacturer.

For this work Kynar LDT1-028K PVDF film sensors were used (Figure 1-1).
These sensors were 208 gm thick and comprised of a 28,4m thick PVDF film, a 125 gm
thick protective Mylar backing, and adhesive. These particular sensors are manufactured
with twisted-pair leads connected. Where the thickness is crucial DT1-028K sensors may be
used; they are 28 am thick and have no protective backing and no leads. Like all PVDF
products, they are very flexible, which makes them unobtrusive and easy to mount on targets.
Kynar sensors are not recommended for precision pressure measurement, but are suitable
for many other applications including the trigger and tilt sensors described here. They are
inexpensive and can be obtained in relatively large sizes, e.g., gauges with dimensions of
165 mm x 22 mm.

The output signal characteristics (magnitude and rise time) depend upon the shock
loading and how the sensors are connected in a circuit; this is discussed in Chapter 2. The
discussion of the application of these sensors as triggering devices in projectile impact
experiments is included in subsequent chapters.

Ktech Corporation, 901 Pennsylvania Ave. NE, Albuquerque, NM 87110.

Pennwalt Corporation, Piezo Film Sensor Division, P.O. Box 799, Valley Forge,
PA 19482.
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FIGURE 1-1. PVDF SENSOR AND CABLE
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In the following chapters the electrical design of the trigger is described, and the
techniques for predicting trigger signal magnitudes and rise times are provided. The sensor's
electrical response is analyzed in two parts: first the piezoelectric response, then the
contact-closure response. The combined trigger is discussed in Chapter 2. Appendix A
briefly describes the overall experimental arrangement used in this work.

1-4
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CHAPTER 2

THE MEASUREMENT OF PROJECTILE TILT

In this chapter the measurement of projectile tilt and the electrical design of the
piezoelectric trigger are described. In the analysis it is assumed that the projectile travels
in vacuo, i.e., the effects of the projectile's travel through a gas at atmospheric pressure are
ignored. Thus, any effects from a bow wave attached to the projectile are not considered.
The effects of a bow wave, if any, should be the subject of future work. The criteria for a
good trigger include a fast rise time signal and a predictable signal magnitude.

The circuit of a piezoelectric PVDF trigger is modeled in Figure 2-1; the combined
circuit is discussed in Chapter 4. The Kynar LDT1-028K sensor had outer dimensions of
nominally 40 mm x 15 mm; the 3.81 cm 2 active area, A, of the sensor had a measured
capacitance of 1.1 nF at 10 kHz, which corresponds to a relative dielectric constant, 6, of
9.14. We now consider the signal generated by the impact of a cylindrical projectile. Note
that the analysis for the output signal, Equation (2-10), can be used for projectiles of any
shape of impact surface.

ANALYSIS

TABLE 2-1. DATA FOR EXAMPLE

C Sensor capacitance 1.1 nF

A Sensor active area 3.81 cm2

d PVDF film thickness 28 gm

e Sensor relative dielectric constant 9.14

r Projectile radius 4.763 mm

v p Projectile velocity 500 m/s

0 Projectile tilt 20 mrads

The area impacted by a 9.525 mm diameter projectile would be 71.26 mm 2 if the
impact were planar, i.e., without tilt. The area of the PVDF sensor that would be impacted
therefore has a capacitance of C1 = 206 pF, and it shares the piezoelectric charge with the
remaining sensor area of capacitance, C2, C2 = 1.1 nF - 206 pF or 894 pF. In practice the
projectile will impact the sensor at a small angle, 0, so that the area of impact, A(t), is
initially zero and rises to the full area, -Trr 2, during the period of impact. Assuming no
deceleration during the initial stages of impact, the total duration of impact is given by the

2-1
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iijc ROUTPUT

PVDF SENSOR

FIGURE 2-1. SCHEMATIC OF PVDF PIEZOELECTRIC TRIGGER CIRCUIT
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time for the full area of contact to be achieved, tf

2r0 (2-1)

where r is the projectile radius and v , the projectile velocity. Now the area of impact, A(t),
can be expressed in terms of a, i.e., he angle subtended between the radius and a chord at
the front of the impact area (Figure 2-2). We define a thus:

Cosa VPt (2-2)

rO

At the time, t, the change of area, dA, can be expressed as 2r sin a dx, and so

dx = rsin a da = vp at (2-3)

0

hence

dA(r) = 2rsinadx

= 2rsina xrsinada
(2-4)

= r 2 (1 -cos2a)da

The total area of impact at some time after first contact is found by integrating from the
start of impact to the angle a, where a is defined by Equation (2-2); thus,

a

A(t) = r 2 f(1 -cos2)d(2
0o (2-5)

= r 2(c- sin2 )
2

The magnitude of the impact area, A(t), as a function of time is shown in Figure 2-3.

Now the current generated by the PVDF sensor can be expressed as the rate of
change of the charge, the product of the charge density and the area, pA. The resultant
voltage, V, is developed by the sensor across the resistor, R. The current is the sum of the
currents in the capacitor, C, and resistor, R,

i = C dV + V (2-6)
dt R

2-3
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Trr
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FIGURE 2-3. IMPACT AREA A(t) VERSUS TIME
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The solution to this differential equation is

Vf) = !ecR i(t)e Rdt (2-7)

0

This solution can be verified by substitution into Equation (2-6).

We assume that the pressure pulse can be represented by a step rise to a pressure
Pmax" By implication the shock ring-up time in the PVDF is assumed to be negligible. The
resultant charge density (electrical charge per unit area) on the sensor will also be a step,

P = P(Pmax)" We assume that C is constant with time; if d is the PVDF film thickness then
C is given by

C edA (2-8)
d

If p is constant, i.e., a function only of pressure, p(P), then we write p for simplicity
and the current can be expressed as a function of area, i.e.,

_ d(pA) PdA(t) + A(t dpi(t) p ~)
dt dt dt

(2-9)
P dAt)

dt

Here A(t) dpldt is always zero for a step-shock (flat-topped). Now the full solution to the
output voltage can be expressed as a function of incremental area:

W e TR f A(t)~ FR(2-10)
0 dt

Note that for a step-shock the structure of the p(P) calibration does not affect the
structure of the output signal in Equation (2-10), only its magnitude. Substituting
Equations (2-3) and (2-4) for dt and dA/dt, and substituting y for y/rO, we have V(t) as a
function of tilt angle 0:

2prv +t

V(O = 2 e-F fsinaeTRdt

CO

C R f1 2 y2 e vP dy
0
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Equation (2-11) is the exact solution for the piezoelectric signal.

Calibration data

There are no calibration data available for the Kynar sensor in terms of p(P) in this
pressure range. For purposes of illustration, we have used the calibration data for the Bauer
transducer reported by Graham2 and Moore. 3 The Bauer polymer is probably of a
different sensitivity than the Kynar material. These data are for a 'shorted' piezoelectric
sensor, i.e., the electric field across the sensor is kept small by shunting it with a small
impedance. Under these conditions the electric charge density, p, is directly proportional
to stress.

The calculation would be precise if a Bauer-type sensor were used. For ease of
analysis we have fitted a power law to the Graham and Moore data.

p(P) = kPP (2-12)

Here k = 1.0025, f8 = 0.6046, P is in GPa, and p(P) is in AC/cm 2.

Numerical solution

An analytic solution to Equation (2-11) has not been found. The solution can be
obtained numerically, as shown in Figure 2-4, where the predicted output signal is shown for
an impact pressure of Pmax = 2.87 GPa and P(Pmax) = 1.896 AC/cm2 . The pressure of
2.87 GPa corresponds to the impact of a mild steel projectile against an explosive (Pentolite)
at 500 m/s; for mild steel impacting mild steel, Pmax = 8.0 GPa. Pmax was obtained using
conventional shock impedance mismatch calculations. The resistance R = 50 l, and the
other pertinent data for this example are taken from Table 2-1.

Shock ring-up in PVDF

The PVDF sensor is sandwiched between the projectile and the target from the time
of impact. However, we have ignored the effect of the sensor on the impact pressure
because the sensor is thin. In other words, the shock reverberation time (ring-up) of a
208 Am thick Kynar LDT1-028K package is -100 ns; the PVDF and the backing of the
Kynar sensor are of similar shock impedances to most explosives so that the total ring-up
time will be close to 100 ns. Note that the sweep time of a 12.7 mm diameter projectile
impacting with a velocity of 500 m/s at an angle of Y' is 141 ns.

For steel to steel impacts the shock impedance of the sensor package is significantly
mismatched to the steel, so the ring-up could be 1 As with the 208 Am thick sensor.

2-7
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Penetration of sensor

The piezoelectric signal can be interrupted at any time by the switch closure signal
due to eventual projectile penetration of the sensor. This complication will be discussed
later. The sensing circuit components can be chosen to simplify the analysis, i.e., when
certain simplifying assumptions become valid. These correspond to the so-called "charge
mode" and "current mode" circuit designs.

Output voltage for large values of resistance, charge mode

If the resistor R is large so that the current in R is negligible compared to the current
in the capacitor C, then Equation (2-6) can be simplified,

i -= C ±V_ (2-13)
dt

Following the same procedure as above we find

V(t) I £A(t) (2-14)
C

Equation (2-14) describes what is termed the "charge mode" of operation because the
output is directly proportional to the charge p. The solution is identical to the solution for
small times, i.e., t (( CR. The maximum output voltage occurs at tf when V = .7rr2 p/C.
Figure 2-5 shows the calculated waveforms for CR = 10 As (R = 50 fl, C = 0.2 AF) using
the exact and approximate solutions, i.e., Equations (2-11) and (2-14). The agreement
between the two equations is quite good. Note that C has been increased from 1.1 nF to
0.2 pF, to satisfy the inequality, by placing an additional capacitance in parallel with the
resistor. As with all high frequency circuits, great care must be taken to use high frequency
(low inductance) capacitors and resistors, and to keep lead inductances small; otherwise, high
frequency oscillations and erroneous data will be obtained.

2-8
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FIGURE 2-4. PIEZOELECTRIC SIGNAL, CR = 55 ns, EQUATION (2-11)

2-9



NAVSWC TR 91-640
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FIGURE 2-5. SIGNALS FOR CR = 10 As, CHARGE MODE, EQUATIONS (2-11)
AND (2-14)
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Output voltage for small values of resistance, current mode

If the resistor, R, is small, so that the current in C is negligible compared to the
current in R, then Equation (2-6) is simplified again,

V(t) = i(t)R = pR d A  (2-15)dt

then from Equations (2-3), (2-4), and (2-9), where , = vpt/rO,

2prvR
V(t) -- 2rvRsinta

o (2-16)

0

Equation (2-16) describes the so-called "current mode" of operation because the
output is directly proportional to the current in the PVDF sensor. The solution is circular,
i.e., V(t) sin a, t - (1 - cos a). Here the maximum voltage occurs at I = tf!2 when sin
a = 1 and V = 2prv R/0; see Figure 2-6 where CR = 1.1 ns, R = 1 fl, and C = 1.1 nF.
Although the figure stows the solutions for both Equations (2-11) and (2-16), the solutions
are in such close agreement that the two plots are indistinguishable.

Pseudo-current mode

The accuracy of Equation (2-16) is reasonably good even when the time, t, is
comparable to CR, i.e., the condition that t is much greater than CR is not satisfied. For
example, the solution of Figure 2-4, where CR = 55 ns and 0 < t < 400 ns, has been
recalculated with Equation (2-16) and is shown in Figure 2-7. The peak voltages of the two
solutions differ by only 4 percent, although they are shifted in time relative to each other.
Consequently, Equation (2-16) is useful to predict approximate signal magnitudes, or to
calculate approximate tilt angles over a wide range of values for CR in the "current mode."

CALCULATION OF TILT FROM THE PIEZOELECTRIC SIGNAL

Equations (2-14) and (2-16) show how r, v_, R, C, and 0, affect the signal magnitude
and structure. Whenever possible the sensor should be operated in the "current mode.." In
this mode no additional capacitor is required and the peak voltage, as predicted by
Equation (2-16), is inversely proportional to 0. Nevertheless, in either mode, the
measurement of the voltage profile provides sufficient information to calculate the tilt.

2-11
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FIGURE 2-6. SIGNALS FOR CR = 1.1 ns, CURRENT MODE,
EQUATIONS (2-11) AND (2-16)
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FIGURE 2-7. SIGNALS FOR CR = 55 ns, PSEUDO-CURRENT MODE,
EQUATIONS (2-11) AND (2-16)
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PENETRATION OF SENSOR BY PROJECTILE

The piezoelectric signal may be interrupted due to penetration by the projectile
through the sensor. At that instant the charge p(P) is discharged, because the projectile
short-circuits the sensor, and the signal rapidly decays to zero. This feature would ordinarily
be undesirable. However, it can be exploited if the sensor is wired as a closing switch, i.e.,
in addition to being wired as a piezoelectric gauge. This is described in Chapter 3.

2-14



NAVSWC TR 91-640

CHAPTER 3

THE CLOSING SWITCH TRIGGER CIRCUIT

The closing switch here is effected by the penetration of the projectile through the
PVDF sensor. This penetration creates a short-circuit between the two surfaces of the
sensor and completes the circuit. The penetration also discharges the piezoelectric charge
developed across the sensor capacitance. The analysis that follows is equally applicable to
any closing switch mechanism. Such devices may include ionization pins, crushing switches,
make-screens, and so on.

A basic closing switch trigger is shown in Figure 3-1. The capacitor, Cc, is charged
to the supply voltage, VC, via a large charging resistor, RC. Note that Cc is not the
capacitance formed by the sensor. The inductance, L, represents the stray inducta:,ce of the
closing circuit. It will be shown that it is essential that L is kept small for efficient circuit
operation. Resistor, r, is the load resistance connected across the device to be triggered,
e.g., an oscilloscope. This load resistance must match the impedance of the connecting
coaxial cable, i.e., 50 fl for a 50 fl cable.

CLOSING SWITCH CIRCUIT SOLUTION

Using conventional circuit theory we equate the sum of the voltages in the circuit to
the voltage on the capacitor, Vc. If time t = 0 represents the time when the switch is closed
we have

t

1' dt+ +Jr
I-'idt +Ldi +ir = V, (3-1)
C 0 dt

The classic solution to this series LCR circuit can be expressed as

Vr
i(t) sin( t) e (3-2)

zo3

3-1
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vc

L

r jVo

SWITCH

FIGURE 3-1. SCHEMATIC OF THE CLOSING SWITCH TRIGGER CIRCUIT
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I- 1where ca = o 1 I -

1 q=

z - cooL, and Z,,co L

Now the output voltage Vo = ir so

V =- sm(o4 t) e 2L, (q>-)
q2 (3-3)

where q' -0

r

The parameter q is a dimensionless number commonly referred to as the
'quality-factor' of the circuit. When q > /2 the current is oscillatory and the circuit is said
to be under-damped. The circuit is over-damped when q < 1/2, in which case the sine term
of Equation (3-3) becomes a hyperbolic sine (sinh) function, i.e.,

__ t

VC 1) (3-4)
=. sinh(o 0 t)e (q <
q

Note that, unlike the piezoelectric signal, the magnitude of the output signal does not
depend on the projectile impact velocity v, the tilt 0, or the radius r. Consequently the
output is predictable, reliable, and repeatable in a wide variety of experimental conditions.

CIRCUIT EFFICIENCY AND THE OUTPUT VOLTAGE RISE TIME

The circuit is most efficient when q is small, i.e., q < 1/2. Then the capacitor energy
is dissipated rapidly into r. If q >> /2 then the circuit oscillates sinusoidally and the energy
is slowly dissipated into r. From Equation (3-2) it can be shown that

q-= Z0 = I L (3.5)

r r ,

3-3
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Hence L must be minimized to obtain an efficient, low q circuit. For this reason a low
inductance capacitance must be used for Cc, e.g., a high frequency disc-ceramic capacitor.

The peak voltage is obtained when dVo/dt = 0. From Equation (3-3) we find that
for an over-damped circuit

tanh(Jt) -2c=°L = 2q'
r

(3-6)

or t 1 tanh-1 (2q')
o /I

Finally, if q 1/2 then the output voltage approaches that of a circuit with an infinite
capacitance, i.e., a circuit where voltage is dominated by L and r alone

-rt (3-7)
V. Z- V, (1 - e L )

Then the rise time, tr, defined by the time required for Vo to rise from 10 to 90 percent of
its peak value, is tr = 1n9 L/r, i.e., 2.1972 L/r. This expression clearly shows that L must be
small for a fast rise time trigger signal. Thus, it is important that L be minimized both to
achieve a non-oscillatory signal and a fast rise-time signal.

In the PVDF sensor circuit described in this report, L < 10 nH, Cc = 20 nF,
r = 50 fl, q < 0.01, and the rise time is < 0.6 ns.

PENETRATION TIME

It is difficult to predict the time taken for the projectile to penetrate the PVDF
sensor, yet this time is required to predict the duration of the piezoelectric output. The
penetration time depends on the properties of the material onto which the sensor is
mounted. Typically penetration occurs after a time greater than the thickness of the sensor
divided by the velocity, v, e.g., =0.5 As for a 208 Am thick sensor impacted at 500 m/s
(Figure 4-2). The combined use of the PVDF trigger circuits, i.e., the use of the
piezoelectric signal coupled with the closure switch signal, is discussed in Chapter 4.

3-4
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CHAPTER 4

THE COMBINATION OF THE PVDF AND CONTACT-CLOSURE TRIGGERS

As described earlier, the projectile may penetrate and short-circuit the PVDF sensor
some time after the initial impact, especially if the tilt angle is large. Therefore the trigger
was designed as a combination piezoelectric and contact-closure sensor.

Prior to impact the classic piezoelectric signal, shown in Figure 2-4, is obtained. If
the projectile penetrates the sensor then a short circuit is formed. A schematic of the
combined trigger circuit is shown in Figure 4-1. At the time of penetration current flows
through the sensor from the charged capacitor, Cc. In this circuit, Cc was charged to
negative voltage so that a positive sigial was gene, ated across the terminating lerad resistor,
r. A PVDF sensor, with an active area of 3.0 cm x 1.27 cm, was attached te a -15 m length
of 50 fl impedance RG223 coaxial cable. This cable was connected to a coaxial series 20 nF
capacitor and then matched with a 50 fl coaxial terminator (r) at the input to a digital
oscilloscope. The capacitor and cable were charged via a 10 kfl resistor from a 90 V supply.

CIRCUIT COMPONENTS

Stray inductances must be minimized for effective circuit operation. Consequently,
the connections to the sensor must be short, close together, and made with relatively thick
wires, e.g., 2_ 2 mm diameter. The authors use 15 m to 30 m lengths of RG58 50 fl cable
for these tilt measurement and trigger applications. In noisy signal environments RG223 is
used. If long lengths of coaxial cable must be used or if higher frequency signals are to be
observed, then RG58 or RG223 are not suitable and a good, low loss cable is recommended.
Good quality 50 fl coaxial terminators should always be used.

The charging capacitor, Cc, was manufactured from a high quality, disc-ceramic
capacitor mounted in a copper cylinder and attached to BNC connectors at each end. In
this configuration the current passed through the center capacitor and back through the
outer copper cylinder and thus formed a coaxial device. Again, lead lengths were kept short.
The charging resistor, Rc, can be any type because it is not part of the high frequency circuit.

4-1



NAVSWC TR 91-640

-90V
10K (2

2VDF 5ENS

PPVDF SENSO

FIGURE 4-1. CIRCUIT OF COMBINED TRIGGER

4-2



NAVSWC TR 91-640

RESULTS OF THE DUAL TRIGGER CIRCUIT

Typical results are shown in Figure 4-2. The portion of the signal between t--0 and
t-300 ns corresponds to the piezoelectric output of the sensor. In this experiment the
steel-projectile impact velocity was 500 m/s against an explosive target. The tilt was = 10 as
estimated from high-speed framing camera data. The projectile diameter was 9.525 mm.

From these data we would predict a peak voltage of 37.8 V as described earlier for
a projectile travelling in vacuo. Clearly this is in reasonable agreement with the peak (for
the piezoelectric portion of the signal) of 32 V. At this point the sensor was short-circuited
and the closing switch circuit took over.

The piezoelectric signal probably did not reach its peak prior to projectile
penetration. For a 10 tilt the total contact time, tf, would be 381 ns; this is larger than the
300 ns observed here, but the exact tilt angle is not known. Note that the PVDF signal was
calculated using calibration data for material poled by the Bauer process, i.e., a different
PVDF material; see Equation (2-7). Moreover, the effects of a bow-shock have been
ignored. Consequently wt feel that while the agreement between the predicted and actual
data may be fortuitous, it does suggest that the approximation of using Equation (2-7)
predicts a signal of the right magnitude.

For more accurate signal prediction, sensors prepared by the Bauer process must be
used or if the Kynar-type sensors are used, calibration data must be independently obtained
for each individual sensor over the range of impact pressures to be considered.
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CHAPTER 5

CONCLUSIONS

We have described a piezoelectric sensor device that provides tilt data for the impact
of a projectile against a target in vacuo. Further work is necessary to quantify the change
of the tilt signal, if any, due to the effects of bow shocks in air or other gasses. However,
applications to date strongly suggest that for use in air at atmospheric pressures the effects
of bow shocks are small, and are not serious compared to the advantages of using these
PVDF triggers. The tilt signal can be combined with a contact-closure signal to provide a
highly reliable and simple trigger that can be used in projectile impact experiments.

The piezoelectric response, i.e., the precursor to the contact-closure signal, gives tilt
information from both the magnitude and rise time of the signal. This is followed by the
closure-switch signal which has a fast rise time, < 1 ns, and a magnitude that can be
accurately predicted. The closure signal is independent of the projectile's velocity, tilt,
impact pressure, and radius.

Finally, the sensor is inexpensive and easy to manufacture from readily available
components.
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APPENDIX A

DESCRIPTION OF THE PROJECTILE IMPACT EXPERIMENTS

For this work, the dual-trigger source was used to provide trigger signals in two series
of projectile impact experiments. In both applications the source never failed to perform
as expected.

FRAGMENT IMPACT EXPERIMENTS

A reliable trigger was needed for a series of fragment impact experiments. These
experiments were designed to study the fragment impact sensitivity of explosives munitions.
The dual trigger/tilt sensor was incorporated into these experiments to evaluate its
performance.

The general arrangement is shown in Figure A-1. PVDF sensors were used to detect
the arrival of the projectile on the front surface of the target. The charges were 76.2 mm
in diameter by 76.2 mm long cast Pentolite, density - 1.67 g/cm3 . The charges were confined
along their length in brass tubes of 6.4 mm wall thickness, and at their rear surface with a
steel witness block 127 mm diameter by 76 mm thick. In two tests, the front surface of the
charge was not covered, so that the projectile impacted it directly; see Table 1. In the other
tests, the front surface was covered by a 4.8 mm thick mild steel plate, held in direct contact
with the test charge; the projectile velocities always exceeded those needed to penetrate the
plate.

In these experiments, the Kynar PVDF sensor was adhered to the bare face of the
explosive or the front surface of the cover plate with ordinary double-sided adhesive tape
(0.003 in. thick, nominal). A short length of twisted leads connected the sensor and RG58
coaxial cable. The circuitry used is described in Figure 4-1. Nicolet 4094 oscilloscopes with
4180 plug-ins, running at 5 ns per point, recorded the sensor data. Figure A-2 shows the
location of the sensor.

Flat-nosed steel projectiles, having masses between 60 g and 80 g and lengths of
36 mm, were fired at the targets by a 20 mm rifled gun. The projectile diameter was varied
from 9.5 to 19 mm. High-speed photography was used to measure the projectile velocities,
V, and the flatness of their impacts on the target.
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